

Схема теплоснабжения муниципального образования

г. Набережные Челны по 2043 год

Обосновывающие материалы

Глава 11. Оценка надежности теплоснабжения

Содержание

1.	Методика расчета показателей надежности тепловых сетей	3
2.	Методика расчета надежности теплоснабжения	7
3	. Основные расчетные зависимости	7
СИТ	Результаты обработки данных по отказам участков тепловых сетей (аварийны уаций), средней частоты отказов участков тепловых сетей (аварийных ситуаций) стеме теплоснабжения г. Набережные Челны за последние 5 лет	В
(бе при	Результаты оценки вероятности отказа (аварийной ситуации) и безотказноваварийной) работы системы теплоснабжения по отношению к потребителя исоединенным к магистральным и распределительным теплопроводам систем плоснабжения г. Набережные Челны	М, /Ы
	План ликвидации аварийных ситуаций на тепловых сетях филиала АО «Татэнерго»	

1. Методика расчета показателей надежности тепловых сетей Обшие положения

Оценка надежности теплоснабжения разрабатывается в соответствии с пунктом 73 Требований к схемам теплоснабжения. Нормативные требования к надёжности теплоснабжения установлены в СНиП 41.02.2003 «Тепловые сети» в части пунктов 6.27-6.31 раздела «Надежность».

Цель расчета — количественная оценка надежности теплоснабжения потребителей и обоснование необходимых мероприятий по достижению нормативной надежности теплоснабжения для каждого потребителя.

Потребители теплоты по надежности теплоснабжения делятся на три категории:

- 1. Первая категория потребители, не допускающие перерывов в подаче расчетногоколичества теплоты и снижения температуры воздуха в помещениях ниже предусмотренных ГОСТ 30494-2011 «Здания жилые и общественные». Например, больницы, родильные дома, детские дошкольные учреждения с круглосуточным пребыванием детей, картинные галереи, химические и специальные производства, шахты и т.п.
- 2. Вторая категория потребители, допускающие снижение температуры в отапливаемых помещениях на период ликвидации аварии, но не более 54 ч:
 - жилых и общественных зданий до +12 °C;
 - промышленных зданий до +8 °C.
 - 3. Третья категория остальные потребители.
- В СНиП 41.02.2003 надежность теплоснабжения определяется по способности проектируемых и действующих источников тепловой энергии, тепловых сетей и в целом систем централизованного теплоснабжения обеспечивать в течение заданного времени требуемые режимы, параметры и качество теплоснабжения (отопления, вентиляции, горячего водоснабжения, а также технологических потребностей предприятий в паре и горячей воде) обеспечивать нормативные показатели вероятности безотказной работы $[P_j]$, коэффициент готовности $[K_j]$, живучести $[\mathcal{K}]$.

Вероятность безотказной работы $[P_j]$ — способность системы не допускать отказов, приводящих к снижению температуры воздуха в зданиях ниже граничного значения. Минимально допустимые показатели вероятности безотказной работы следует принимать для:

- источника тепловой энергии РИТ = 0,97;
- тепловых сетей РТС = 0,9;
- потребителя теплоты $P\Pi T = 0.99$;

• СЦТ в целом РСЦТ = $0.9 \times 0.97 \times 0.99 = 0.86$.

Нормативные показатели безотказности тепловых сетей обеспечиваются следующимимероприятиями:

- установлением предельно допустимой длины нерезервированных участков теплопроводов (тупиковых, радиальных, транзитных) до каждого потребителя или теплового пункта;
- местом размещения резервных трубопроводных связей между радиальными теплопроводами;
- достаточностью диаметров, выбираемых при проектировании новых или реконструируемых существующих теплопроводов для обеспечения резервной подачи теплоты потребителям при отказах;
- необходимость замены на конкретных участках конструкций тепловых сетей итеплопроводов на более надежные, а также обоснованность перехода на надземную или тоннельную прокладку;
- очередность ремонтов и замен теплопроводов, частично или полностью утративших свой ресурс.

Коэффициент готовности $[K_j]$ представляет собой вероятность того, что в произвольный момент времени в течение отопительного периода потребителям будет обеспечена подача расчетного количества тепла.

Готовность системы теплоснабжения к исправной работе в течение отопительного периода определяется по числу часов ожидания готовности: источника тепловой энергии, тепловых сетей, потребителей теплоты, а также — числу часов нерасчетных температур наружного воздуха в данной местности.

Минимально допустимый показатель готовности системы теплоснабжения к исправной работе K_i принимается 0,97.

Нормативные показатели готовности систем теплоснабжения обеспечиваются следующими мероприятиями:

- подготовкой системы теплоснабжения к отопительному сезону;
- достаточностью установленной (располагаемой) тепловой мощности источника тепловой энергии для обеспечения исправного функционирования системы теплоснабжения при нерасчетных похолоданиях;
- способностью тепловых сетей обеспечить исправное функционирование системы теплоснабжения при нерасчетных похолоданиях;
- организационными и техническими мерами, необходимые для обеспечения исправного функционирования системы теплоснабжения на уровне заданной готовности;
- максимально допустимым числом часов готовности для источника тепловойэнергии.

Термины и определения

Термины и определения, используемые в данном разделе, соответствуют определениям ГОСТ 27.002-2015 «Надежность в технике», ГОСТ 15467-79 «Управление качеством продукции».

Надежность — свойство участка тепловой сети или элемента тепловой сети сохранять во времени в установленных пределах значения всех параметров, характеризующих способность обеспечивать передачу теплоносителя в заданных режимах и условиях применения и технического обслуживания. Надежность тепловой сети и системы теплоснабжения является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенные сочетания этих свойств.

Безотказность — свойство тепловой сети непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки;

Долговечность — свойство тепловой сети или объекта тепловой сети сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта;

Ремонтопригодность – свойство элемента тепловой сети, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта;

Исправное состояние – состояние элемента тепловой сети и тепловой сети в целом, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации;

Неисправное состояние – состояние элемента тепловой сети или тепловой сети в целом, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации;

Работоспособное состояние – состояние элемента тепловой сети или тепловой сети в целом, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации;

Неработоспособное состояние – состояние элемента тепловой сети, при котором значение хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативнотехнической и (или) конструкторской (проектной) документации. Для сложных объектов возможно деление их неработоспособных состояний. При

этом из множества неработоспособных состояний выделяют частично неработоспособные состояния, при которых тепловая сеть способна частично выполнять требуемые функции;

Предельное состояние – состояние элемента тепловой сети или тепловой сети в целом, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно;

Критерий предельного состояния — признак или совокупность признаков предельного состояния элемента тепловой сети, установленные нормативнотехнической и (или) конструкторской (проектной) документацией. В зависимости от условий эксплуатации для одного и того же элемента тепловой сети могут быть установлены два и более критериев предельного состояния;

Дефект – каждое отдельное несоответствие продукции установленным требованиям;

Повреждение — событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния;

Отказ – событие, заключающееся в нарушении работоспособного состояния элемента тепловой сети или тепловой сети в целом;

Критерий отказа — признак или совокупность признаков нарушения работоспособного состояния тепловой сети, установленные в нормативнотехнической и (или) конструкторской (проектной) документации.

Для целей перспективной схемы теплоснабжения термин «отказ» будет использован в следующих интерпретациях:

- •отказ участка тепловой сети событие, приводящие к нарушению его работоспособного состояния (т.е. прекращению транспорта теплоносителя по этому участку в связи с нарушением герметичности этого участка);
- \bullet отказ теплоснабжения потребителя событие, приводящее к падению температуры в отапливаемых помещениях жилых и общественных зданий ниже +12 °C, (в промышленных зданиях ниже +8 °C).

При разработке схемы теплоснабжения для описания надежности термины «повреждение» и «инцидент» будут употребляться только в отношении событий, к которым может быть применена процедура отложенного ремонта, потому что в соответствии с ГОСТ 27.002-2015 эти события не приводят к нарушению работоспособности участка тепловой сети и, следовательно, не требуют выполнения незамедлительных ремонтных работ с целью восстановления его работоспособности. К таким событиям относятся

зарегистрированные «свищи» на прямом или обратном теплопроводах тепловых сетей. Тем не менее, ремонтные работы по ликвидации свищей требуют прерывания теплоснабжения (если нет вариантов подключения резервных теплопроводов), и в этом смысле они аналогичны «отложенным» отказам.

В документе не употребляется термин «авария», так как это характеристика «тяжести» отказа и возможных последствие его устранения. Все упомянутые в этом абзаце термины устанавливают лишь градацию (шкалу) отказов.

2. Методика расчета надежности теплоснабжения

Расчет показателей надежности тепловых сетей муниципального образования город Набережные Челны проводился с помощью программного комплекса «ZuluThermo» в соответствии с П18.2 «Определение показателей надежности потребителя, присоединенного к тепловой сети системы теплоснабжения» Приказа Министерства энергетики РФ от 5 марта 2019 г. № 212 «Об утверждении Методических указаний по разработке схем теплоснабжения».

3. Основные расчетные зависимости Интенсивность отказов теплопровода λ с учетом времени его эксплуатации рассчитывается по принятой формуле:

$$\lambda = \lambda_{\text{\tiny HAM}} \cdot \left(0, 1 \cdot \tau^{\text{\tiny 9KCHII}}\right)^{\alpha-1}, \ 1/(\text{KM} \cdot \text{H});$$

где $\lambda_{\text{\tiny HAЧ}}$ — начальная интенсивность отказов теплопровода, соответствующая периоду нормальной эксплуатации, $1/(\text{км}\cdot\text{ч})$;

 $au^{\text{экспл}}$ — продолжительность эксплуатации участка, лет;

 α — коэффициент, учитывающий продолжительность эксплуатации:

$$\alpha = \begin{cases} 0.8 & \text{при} \quad 0 < \tau^{\text{экспл}} \le 3 \\ 1 & \text{при} \quad 3 < \tau^{\text{экспл}} \le 17 \\ 0.5 \cdot e^{\left(\frac{\tau^{\text{экспл}}}{20}\right)} & \text{при} \quad \tau^{\text{экспл}} > 17 \end{cases}$$

Расчет интенсивности отказов участков тепловой сети, имеющих продолжительность эксплуатации до 25 лет, производится по формуле. Участки сети с продолжительностью эксплуатации более 25 лет выделяются в отдельную группу как потенциально ненадежные. На основе дополнительного анализа их состояния выбираются участки, требующие первоочередной перекладки. Для дальнейших расчетов интенсивность отказов этих участков принимается равной

интенсивности отказов новых участков, а не перекладываемых участков – максимальной (т.е. равной интенсивности отказов участков, имеющих продолжительность эксплуатации 25 лет).

• Интенсивность отказов единицы запорно-регулирующей арматуры (3PA) принимается равной:

$$\lambda_{3PA} = 2,28 \cdot 10^{-7}, 1/4;$$

• Параметр потока отказов участков тепловой сети:

$$\omega = \lambda \cdot L$$
, 1/4;

где L – длина участка тепловой сети, км;

• Среднее время до восстановления участков тепловой сети:

$$z^b = a \cdot [1 + (b + c \cdot L_{c3})] \cdot d^{1,2}, \text{ Y};$$

где L_{c_3} – расстояние между секционирующими задвижками, км;

 $a,\ b,\ c$ — коэффициенты, учитывающие способ прокладки теплопровода;

d — диаметр участка тепловой сети, м.

Значения коэффициентов a, b, c, учитывающих способ прокладки теплопровода, приведены в Табл. 2.1.

В зависимости от диаметра теплопровода, значения расстояний между секционирующими задвижками $L_{\rm cs}$ должно соответствовать требованиям СНиП 41–02–2003 «Тепловые сети», приведены в Табл. 2.2.

Табл. 2.1. Значения коэффициентов a, b, c

Способ прокладки	Значения коэффициентов			
теплопровода	а	в	c	
в канале (без канала)	6	0,5	0,0015	

 Табл. 2.2 . Расстояния между секционирующими задвижками в метрах и место их расположения

Диаметр	Диаметр	не изменяется	Диамет	р изменяется
тепло-	без ответвлений	ответвления	без ответвлений	ответвления
до 0,4	непосредственно за		непосредственно за местом изменения диаметра, 1000	непосредственно за ответвлением, 1000
от 0,4 до 0,6	1500	непосредственно за ответвлением 1500	непосредственно за местом изменения диаметра, 1000	непосредственно за ответвлением, 1000
от 0,6 до 0,9	3000	непосредственно за ответвлением, 3000	непосредственно за местом изменения диаметра, 1000, 1500	непосредственно за ответвлением, 1000, 1500
более 0,9	5000	непосредственно за ответвлением, 5000	непосредственно за местом изменения диаметра, 1000, 1500, 3000	непосредственно за ответвлением, 1000, 1500, 3000

• Среднее время до восстановления запорно-регулирующей

арматуры:

Время восстановления запорно-регулирующей арматуры принимается равным времени восстановления теплопровода, так как отказ запорно-регулирующей арматуры и отказ теплопровода одного и того же диаметра требуют сопоставимых временных затрат на их восстановление;

• Интенсивность восстановления элементов тепловой сети:

$$\mu = \frac{1}{z^{\text{B}}}, 1/\text{y};$$

• Стационарная вероятность рабочего состояния сети:

$$p_0 = \left(1 + \sum_{i=1}^{N} \frac{\omega_i}{\mu_i}\right)^{-1};$$

где N — число элементов тепловой сети, шт;

• Вероятность состояния сети, соответствующая отказу f-го элемента:

$$p_f = \frac{\omega_f}{\mu_f} \cdot p_0;$$

• Температура воздуха в здании j-го потребителя в конце периода восстановления f-го элемента:

$$t_{j,f}^{\text{B}} = t^{\text{HP}} + \frac{t_{j}^{\text{BP}} - t^{\text{HP}} - \overline{q}_{j,f} \left(t_{j}^{\text{BP}} - t^{\text{HP}}\right)}{e^{\left(\frac{z_{j}^{e}}{\beta_{j}}\right)}} + \overline{q}_{j,f} \cdot \left(t_{j}^{\text{BP}} - t^{\text{HP}}\right), \, {}^{\text{O}}\text{C};$$

где $t_{j,f}^{\text{в}}$ — расчетная температура воздуха в здании j-го потребителя, °C;

 $t^{\text{нр}}$ — расчетная для отопления температура наружного воздуха, °C;

 $\overline{q}_{j,f} = \frac{q_{j,f}}{q_j^p}$ — относительный часовой расход тепла у j-го потребителя при отказе f-го элемента при $t^{\text{нр}}$;

 $q_{_{j,f}}$ — часовой расход тепла у j-го потребителя при отказе f-го элемента при $t^{^{\mathrm{np}}}$, Γ кал;

 q_j^p — расчетная часовая нагрузка j-го потребителя при отказе f-го элемента при $t^{\text{пр}}$, Γ кал/ч;

 $\mathbf{z}_{j}^{\scriptscriptstyle \mathrm{B}}$ — время восстановления f-го элемента тепловой сети, ч;

 eta_{j} — коэффициент тепловой аккумуляции здания j-го потребителя, ч.

Численные значения коэффициента тепловой аккумуляции здания ($eta_{_{\! f}}$) для

различных типов зданий принимаются в соответствии с рекомендациями МДС 41-6.2000 «Организационно-методические рекомендации по подготовке к проведению отопительного периода и повышению надежности систем коммунального теплоснабжения в городах и населенных пунктах Российской Федерации».

Численные значения расчетной температуры воздуха в зданиях потребителей ($t^{\text{нр}}$) принимаются в соответствии с требованиями СанПиН 2.1.2.2645-10 «Санитарно- эпидемиологические требования к условиям проживания в жилых зданиях и помещениях».

• Коэффициент готовности системы к теплоснабжению j-го потребителя:

$$K_j = p_0 + \sum_{f \notin j} p_f \cdot \frac{\tau_{\text{ot}} - \tau_{j,f}^{\text{H}}}{\tau_{\text{ot}}},$$

где $au_{\mbox{\tiny or}}$ — продолжительность отопительного периода, ч;

 $au_{j,f}^{\text{H}}$ — продолжительность действия низких температур наружного воздуха $au_{j,f}^{\text{H}}$ (ниже расчетной температуры наружного воздуха au^{HP}) в течение отопительного периода, при которой время восстановления отказавшего f-го элемента становится равнымвремени снижения температуры воздуха в здании f-го потребителя до минимальнодопустимого значения, ч;

если температура наружного воздуха ($\tau_{j,f}^{\text{\tiny H}}$) оказывается равной или выше +8 °C (начало отопительного сезона), отказы данного f-го элемента нарушают расчетный уровень теплоснабжения j-го потребителя в течение всего отопительного сезона ($\tau_{j,f}^{\text{\tiny H}} = \tau_{\text{\tiny от}}$), то при расчете K_j , коэффициент при p_f равен 0;

если $au_{j,f}^{\scriptscriptstyle \mathrm{H}}$ оказывается ниже или равной $au^{\scriptscriptstyle \mathrm{HP}}$, отказы f-го элемента в течение всего отопительного сезона не влияют на теплоснабжение j-го потребителя ($au_{j,f}^{\scriptscriptstyle \mathrm{H}}=0$), то при расчете K_j , коэффициент при p_f равен 1;

если $au^{_{\mathrm{HP}}} < au_{_{j,f}}^{^{_{\mathrm{H}}}} < +8$ °C и $0 < au_{_{j,f}}^{^{_{\mathrm{H}}}} < au_{_{\mathrm{or}}}$, то при расчете $K_{_{j}}$, коэффициент при $p_{_{f}}$ равен $\frac{ au_{_{\mathrm{or}}} - au_{_{j,f}}^{^{_{\mathrm{H}}}}}{ au_{_{\mathrm{or}}}}$.

Численное значение продолжительности действия температур наружного воздуха $\tau_{j,f}^{\text{\tiny H}}$ при условии $\tau^{\text{\tiny HP}} < \tau_{j,f}^{\text{\tiny H}} < +8\,^{\circ}\text{C}$ определяется в соответствии с требованиями СП 131.13330.2012 «Строительная климатология».

Вероятность безотказного теплоснабжения j-го потребителя в течение отопительного периода:

$$P_{i} = e^{-\left(\sum_{f} \omega_{f} \cdot (\tau_{\text{or}} - z_{i,f}) \cdot e^{-\left(\frac{z_{j},f}{z_{k},f}\right)}\right)}$$

• Средний суммарный недоотпуск теплоты j-ому потребителю в течение отопительного периода:

$$\overline{Q}_{j} = \left(g_{0j} - \sum_{f=0} p_{f} g_{f,j}\right) \cdot \left(\tau_{1p} - \tau_{2p}\right) \cdot \frac{\tau_{j}^{\text{вр}} - \tau_{\text{ср. от}}^{\text{н}}}{\tau_{j}^{\text{вр}} - \tau_{\text{пр}}^{\text{нр}}} \cdot \tau_{\text{от}} \cdot 10^{-3}, \Gamma \text{кал;}$$

где g_{0j} – расчетный расход теплоносителя j-м потребителем, т/ч;

 $au_{\text{ср.от}}^{\text{\tiny H}}$ — среднее значение температуры наружного воздуха в отопительном периоде, °C.

Допущения, принятые в расчете

Численные значения показателей надежности определяются для отопительной нагрузки потребителей, отнесенных к узлам расчетной схемы тепловой сети.

- Распределение потока отказов в тепловой сети простое пуассоновское.
- Вероятность одновременного возникновения двух отказов не учитывается, так как в действующих тепловых сетях вероятность одновременного возникновения двух отказов натри четыре порядка меньше вероятности возникновения одного отказа.
- Исправное состояние тепловой сети и состояние отказа участка тепловой сети описываются графом состояний, в котором переход тепловой сети из исправного состояния в состояние отказа происходит при отказе одного любого элемента тепловой сети. При расчете показателей надежности обратный перевод тепловой сети из состояния отказа в исправное состояние не производится.
- При восстановлении отказавшего элемента тепловой сети отказы других элементовтепловой сети не происходят.
- При анализе последствий отказов в тепловой сети, считается возможным перевод всостояние отказа любого элемента тепловой сети, путем его отключения.
- Надежность тепловой сети оценивается по характеристикам надежности ее элементов. С этой целью вычисляются вероятностные меры возможных состояний тепловой сети с определением количества тепловой энергии, подаваемой каждому потребителю в этих состояниях и учетом временного резерва на восстановление теплоснабжения потребителей.
- Функциональным отказом тепловой сети считается снижение температуры воздуха вздании потребителя ($t^{\text{в}}$), ниже минимально допустимого значения, нормированного СП 131.13330.2012 «Строительная климатология».

• Для каждого обобщенного потребителя электронной модели схемы теплоснабжения, коэффициент тепловой аккумуляции устанавливается, с учетом теплоаккумулирующих характеристик и категорийности зданий.

Определение вероятности состояний тепловой сети производится для временного сечения отопительного периода, соответствующего расчетной температуре наружного воздуха (t_{un}).

- За расчетный период принимается продолжительность отопительного периода ($au_{\text{от}}$).
- Среднее значение интенсивности отказов 1 км одного (подающего или обратного) теплопровода $\lambda_{\rm r}$, принимается равным 5,7 10^{-6} , $1/({\rm km\cdot r})$ или 0,05 $1/({\rm km\cdot r})$. Среднее значение интенсивности отказов одного элемента запорнорегулирующей арматуры $\lambda_{\rm 3PA}$, принимается равным 2,28 10^{-7} , $1/{\rm r}$ или 0,002 $1/{\rm r}$ од, а распределение потока отказов простым пуассоновским.
- Распределение потока отказов участка тепловой сети подчиняется закону Вейбулла. Расчет интенсивности отказов участков тепловой сети, имеющих продолжительность эксплуатации до 25 лет, производится по формуле. Участки сети с продолжительностью эксплуатации более 25 лет выделяются в отдельную группу как потенциально ненадежные. На основе дополнительного анализа их состояния выбираются участки, требующие первоочередной перекладки. Для дальнейших расчетов интенсивность отказов этих участков принимается равной интенсивности отказов новых участков, а не перекладываемых участков максимальной (т.е. равной интенсивности отказов участков, имеющих продолжительность эксплуатации 25 лет).
- Расстояние между секционирующими задвижками в электронной модели схемы теплоснабжения проверяется с помощью топологического анализа их расположения на участках тепловой сети. Если в результате анализа выявляется несоответствие принятым условиям, то в расчете среднего времени восстановления количество секционирующих задвижек и расстояние между ними условно принимается равным такому, при котором обеспечивается выполнение этих условий.
 - 3. Результаты обработки данных по отказам участков тепловых сетей (аварийных ситуаций), средней частоты отказов участков тепловых сетей (аварийных ситуаций) в системе теплоснабжения г.

Набережные Челны за последние 5 лет

Показатели повреждаемости тепловых сетей НЧТС в зоне деятельности АО «Татэнерго» за последние 5 лет приведены в Табл. 3.1.

Табл. 3.1. Показатели повреждаемости тепловых сетей НЧТС в зоне деятельности AO «Татэнерго» (по каждой системе теплоснабжения от каждого источника теплоснабжения)

Наименование показателя	2020	2021	2022	2023	2024
Повреждения в магистральных тепловых сетях, 1/км/год, в том числе:	0,19	0,17	0,08	0,07	0,25
в отопительный период, 1/км/год/оп	0,115	0,071	0,0301	0,0378	0,0858
в период испытаний на плотность и прочность, 1/км/год	0,072	0,1	0,0519	0,0337	0,1679
Повреждения в распределительных тепловых сетях, 1/км/год, в том числе:	0,50	0,47	0,35	0,32	0,53
в отопительный период, 1/км/год/оп	0,225	0,159	0,171	0,174	0,25
в период испытаний на плотность и прочность, 1/км/год	0,27	0,306	0,182	0,142	0,2759
Повреждения в сетях горячего водоснабжения (в случае их наличия), 1/км/год	-	-	-	-	-
всего повреждения в тепловых сетях, 1/км/год	0,68	0,64	0,44	0,39	0,78

Табл. 3.2. Показатели восстановления в тепловых сетях НЧТС в зоне деятельности AO «Татэнерго»

Наименование показателя	2020	2021	2022	2023	2024
Среднее время восстановления теплоснабжения после повреждения в магистральных тепловых сетях в отопительный период, час	не более 6				
	часов	часов	часов	часов	часов
Среднее время восстановления отопления после повреждения в распределительных тепловых сетях систем отопления, час:	не более 6				
	часов	часов	часов	часов	часов
Среднее время восстановления горячего	Сети ГВС				
	отсутствуют	отсутствуют	отсутствуют	отсутствуют	отсутствуют

Наименование показателя	2020	2021	2022	2023	2024
водоснабжения поле					
повреждения в сетях					
горячего					
водоснабжения (в					
случае их наличия),					
час					
Всего среднее время					
восстановления					
отопления после	не более 6				
повреждения в	часов	часов	часов	часов	часов
магистральных и					
распределительных					
тепловых сетях, час					

Табл. 3.3. Показатели восстановления в тепловых сетях Набережночелнинской ТЭЦ и Котельной цех БСИ и зоне деятельности АО «Татэнерго»

Наименование показателя	2020	2021	2022	2022	2023
Среднее время восстановления теплоснабжения после повреждения в магистральных тепловых сетях в отопительный период, час	-	-	1	-	1
Среднее время восстановления отопления после повреждения в распределительных тепловых сетях систем отопления, час:	до 6 ч				
Среднее время восстановления горячего водоснабжения поле повреждения в сетях горячего водоснабжения (в случае их наличия), час	-	-	-	-	-
Всего среднее время восстановления отопления после повреждения в магистральных и распределительных тепловых сетях, час	до 6 ч				

Табл. 3.4 Средний недоотпуск тепловой энергии на отопление потребителей в системе теплоснабжения зоны НЧТС в зоне деятельности АО «Татэнерго»

Наименование показателя	2020	2021	2022	2023	2024
Средний недоотпуск					
тепловой энергии на	2 050	2 207	2 181	644	1094
отопление в системе					
теплоснабжения					

Табл. 3.5. Реконструкция тепловых сетей филиала АО «Татэнерго» НЧТС для обеспечения надежности теплоснабжения потребителей, в том числе в связи с исчерпанием эксплуатационного ресурса в зоне деятельности единой теплоснабжающей

организации № 1 АО "Татэнерго"

№ п/п	Наименование мероприятия	Физические объемы реализации	Год (период) реализации, ГГГГ	Затраты на мероприятие, тыс. руб. без НДС	Затраты на мероприятие, тыс. руб. с НДС	Источник финансирования
1	Тепловод № ПКЗ от ТК-1 до ТК-2 около МУП "ПАД". Реконструкция.	124 п.м. (Д219)	2030	4 729,60	5675,52	Амортизация общества
2	Тепловод ПКЗ зона Б ТК-1в - Узел учета (умен.Ду300 до Ду150)	356 п.м. (Д159)	2026-2027	4 855,62	5826,74	Амортизация общества
3	Тепловые сети п.Сидоровка (Тепловод № С-1 юз) Участок от ТК-197/2 до ТК-222 Казанский проспект, Сидоровкий парк.	720 п.м. (Д426)	2029	36 815,08	44178,10	Прибыль на развитие
4	Тепловые сети п.Сидоровка (Тепловод № С-1 юз) Участок от ТК-222 до ТК-237/1 Казанский проспект, Сидоровкий парк.	1280 п.м. (Д426)	2030	68 328,78	81994,54	Амортизация общества
6	Тепловод ПКЗ зона А ТК-4 - ТК-5 из проход.к.в непрох-й (умен.Ду300доДу150)	493,4 п.м. (Д159)	2030	4 355,75	5226,90	Амортизация общества

Nº ⊓/⊓	Наименование мероприятия	Физические объемы реализации	Год (период) реализации, ГГГГ	Затраты на мероприятие, тыс. руб. без НДС	Затраты на мероприятие, тыс. руб. с НДС	Источник финансирования
7	Тепловод ПКЗ зона А ТК-5 - ТК-6 из проход.к.в непрох-й (умен.Ду300доДу150)	93 п.м. (Д159)	2030	1 382,54	1659,05	Амортизация общества
8	Тепловод ПКЗ зона А ТК-6 - ТК-7 из проход.к.в непрох-й (умен.Ду300доДу150)	193 п.м. (Д159)	2030	2 869,15	3442,98	Амортизация общества
9	Тепловод ПКЗ зона А ТК-7 - ТК-8 из проход.к.в непрох-й (умен.Ду300доДу150)	47 п.м. (Д159)	2030	698,7	838,44	Амортизация общества
10	Тепловод ПКЗ зона А ТК-8 - ТК-9 из проход.к.в непрох-й (умен.Ду300доДу150)	284 п.м. (Д159)	2030	4 407,72	5289,26	Амортизация общества
11	тепловод №320 КП - Шахта	257 п.м. (Д1020)	2030	49 978,16	59973,79	Амортизация общества
	№1 - ПТК3 (опуск с эстакады)			4 234,68	5081,62	Прибыль на развитие
12	Тепловод №110 КП - Шахта №1 - Ут3 (опуск с эстакады) - К2	732,2 п.м. (Д1020)	2031	136 058,70	163270,44	Прибыль на развитие

Nº п/п	Наименование мероприятия	Физические объемы реализации	Год (период) реализации, ГГГГ	Затраты на мероприятие, тыс. руб. без НДС	Затраты на мероприятие, тыс. руб. с НДС	Источник финансирования
13	Реконструкция объекта «Тепловод №210» на участках КП – УТ-3 – К-2	825,6 п.м. (Д1020)	2031	153 414,45	184097,34	Прибыль на развитие
14	Реконструкция объекта «Тепловые сети ЗЯБ 17 комплекса» на участках т.А – ТК-143 – ТК-144 (Тепловод №17 юз)	264 п.м (Д530); 154 п.м (Д325)	2026-2027	29 950,77	35940,92	Амортизация общества
15	Реконструкция объекта «Т/сеть БСИ-ЦОК» на участках от ТК-197 до ТУ-7 (Тепловод №510)	1600 п.м (Д720)	2033	179 298,99	215158,79	Прибыль на развитие
16	Т/сети от станции юго- зап.части города до узла 8 (Тепловод № БСИ ТС) от ТУ- 1/1 до ТУ-8 перенос врезки с ТУ-1/1 в точку «А» тепловода № 50	20 п.м. (Д273)	2035	713,1	855,72	Амортизация общества
17	Тепловод №111 на участке ТУ- 9 – ТУ-9а – ТУ-10 – ТУ-11. Реконструкция	2393 п.м. (Д720)	2023-2026	97 745,23	117294,28	Амортизация,Прибыль направленная на инвестиции

Nº ⊓/⊓	Наименование мероприятия	Физические объемы реализации	Год (период) реализации, ГГГГ	Затраты на мероприятие, тыс. руб. без НДС	Затраты на мероприятие, тыс. руб. с НДС	Источник финансирования
18	Тепловод 111. Участок от ТУ-7 - ТУ-89 - ТУ-89а - КТС-18 -ТУ-8 - ТУ-9. Реконструкция	1262 п.м. (Д920) 937,2 п.м. (Д820)	2024-2029	69 130,84	82957,01	Амортизация,Прибыль направленная на инвестиции
19	Реконструкция объекта "Тепловод 111" участок ТУ-8 - ТУ-19 - ТУ-КТС-36	1185 п.м. (Д630)	2026-2027	73 537,87	88245,45	Амортизация,Прибыль направленная на инвестиции
20	Реконструкция объекта «Тепловод №111» на участках ТУ-КТС-36 – ТУ-15 – ТУ-81	1340 п.м (Д630)	2030	83 424,26	100109,11	Амортизация,Прибыль направленная на инвестиции
21	Тепловод 321. Участок ТК-НО- 336 - КТС-179. Реконструкция	1006 п.м. (Д820)	2028-2029	159 977,05	191972,46	Амортизация общества
22	Тепловод 211. Участок ТУ-12 - ТУ-21; Тепловод 321. Участок ТУ-12 - ТУ-12а. Реконструкция	974 п.м. (Д720); 546 п.м. (Д426)	2025-2026	251 460,30	301752,36	Амортизация,Прибыль направленная на инвестиции
23	Тепловод № ПКЗ, зона Б. Участок от ТК-1а до ТК-1 к ГПАД. Реконструкция	198,4 п.м. (Д159)	2025-2026	8 364,31	10037,17	Амортизация общества

Nº ⊓/⊓	Наименование мероприятия	Физические объемы реализации	Год (период) реализации, ГГГГ	Затраты на мероприятие, тыс. руб. без НДС	Затраты на мероприятие, тыс. руб. с НДС	Источник финансирования
24	Реконструкция объекта "Магистральные т/сети от узла 6 до ПНС" на участках ТУ-1 - ТУ-11 - ТУ-10 - ТУ-12 (Тепловод №500, уменьш. диаметра с 2d1020мм на 2d920мм)	2260 п.м. (Д920)	2022-2028	250 597,87	300717,44	Амортизация,Прибыль направленная на инвестиции
25	Тепловые сети 3 комплекса ГЭС. ТК-4 - ТК-53; ТК-53 - ТК-212/1; ТК-212/1 - ТК-213; ТК-213 - ж.д 3А/40; ТК-213 - ТК-54; ТК-54 - ж.д 3/12; (демонтаж ТК-212/1 – ТК-212; ТК-212 – ТК-54); строительство (2d108мм; L48м) от ТК-213 до ТК-54 для изменения точки подключения объектов: жилой дом 3/12, 3/66 ФЛ Лазарева О.Н. Реконструкция	316 п.м. (Д426); 334 п.м. (Д159); 96 п.м. (Д108) 36 п.м. (Д89); 8 п.м. (Д57)	2027-2028	99 474,84	119369,81	Амортизация,Прибыль направленная на инвестиции

Nº ⊓/⊓	Наименование мероприятия	Физические объемы реализации	Год (период) реализации, ГГГГ	Затраты на мероприятие, тыс. руб. без НДС	Затраты на мероприятие, тыс. руб. с НДС	Источник финансирования
26	Тепловые сети ЗЯБ 15 комплекса. ТК-8/1 – ТК-9; ТК-9 – жилой дом 15/16; подвал 15/16; ТК-9 – жилой дом 15/XVIII; Подвал 15/XVIII; жилой дом 15/XVIII – ТК-61/1; ТК-61/1 – ТК-61. (уменьш. диамтра ТК-8/1 – ТК- 9 с 2d426мм на 2d219мм). Реконструкция	746 п.м. (Д219); 32 п.м. (Д108)	2025	29 335,70	35202,84	Амортизация общества
27	Т/сети от станции юго-зап. части города до узла 8 (Тепловод ТС БСИ) от ТУ- 5/2 до ТУ-5/2-2 (уменьш. диаметра с 2d108мм на 2d89мм; 2d76мм). Реконструкция	222 п.м. (Д89); 204 п.м. (Д57)	2026	3 245,53	3894,64	Амортизация,Прибыль направленная на инвестиции
28	Т/сети от станции юго-зап. части города до узла 8 (Тепловод ТС БСИ) от ТУ-10 до ТУ-10/3 (уменьш. диаметра ТУ-10/1 - ТУ-10/3 с 2d159мм на 2d89мм). Реконструкция	246 п.м. (Д219); 398 п.м. (Д89)	2026	4 753,72	5704,46	Амортизация,Прибыль направленная на инвестиции

Nº ⊓/⊓	Наименование мероприятия	Физические объемы реализации	Год (период) реализации, ГГГГ	Затраты на мероприятие, тыс. руб. без НДС	Затраты на мероприятие, тыс. руб. с НДС	Источник финансирования
29	Тепловые сети п. Сидоровка (Тепловод № С-1 юз).ТК-235 – ТК-237 – ТК-237/1; ТК-237/1 – ТК-278; ТК-278 – ТК-270 (уменьш. диаметра со строительством новой ТК для изменения точки подключения детского сада №3 «Эллюки» на участке ТК-235 – ТК-237 с 2d426мм на 2d273мм; L223м). Реконструкция	956 п.м. (Д426); 990 п.м. (Д377); 58 п.м. (Д108)	2025-2026	103 298,63	123958,36	Амортизация,Прибыль направленная на инвестиции
30	Реконструкция объекта «Теплотрасса ПНС БСИ- Сидоровка-2эт» на участках ТУ-305/2 – ТУ-305/3; т.А (место опуска) – т.Б (парковка ТЦ «Эссен»); т.Б до ТК-293 (тепловод №510)	847 п.м (Д720)	2029	82 127,26	98552,72	Амортизация,Прибыль направленная на инвестиции

Nº ⊓/⊓	Наименование мероприятия	Физические объемы реализации	Год (период) реализации, ГГГГ	Затраты на мероприятие, тыс. руб. без НДС	Затраты на мероприятие, тыс. руб. с НДС	Источник финансирования
31	Тепловые сети ЗЯБ 15 комплекса (Тепловод № 15 юз). ТК-7 - ТК-7/1; ТК-7/1 - ТК- 5/1 - ТК-5 -0 ТК-4 - ТК-4/1 - ТК- 25 - ТК-24; ТК-2 - ж/д 15/13 (подвал) - ТК-5; ТК-4/1 - ТК-6 - ж/д 15/3; ТК-6 - 15/18; ТК-5/1 - ж/д 15/4. Реконструкция	1044 п.м. (Д325); 218 п.м. (Д89); 18 п.м. (Д57)	2025-2027	64 923,10	77907,72	Амортизация общества
32	Тепловые сети 9 комплекса ГЭС (тепловод №9 юз) ТК-89/2 - ж.д 9/53; ТК-89/2 - ТК-56/2 — точка «А»; точка «А» - ТК-56 — ТК-57. Реконструкция	690 п.м. (Д325); 54 п.м. (Д108)	2025-2026	53 734,46	64481,35	Амортизация,Прибыль направленная на инвестиции
33	Реконструкция объекта "Магистральная т/сеть от УТ-1 до подъема на мост" на участках ТУ-6 –ТУ-5/1 – ТУ-5 – ТУ-4/2 – ТУ-4/1 – ТУ-4 – ТУ-1 (тепловод №510)	4298 п.м. (Д720)	2025-2030	619 160,34	742992,41	Амортизация,Прибыль направленная на инвестиции

Согласно предоставленным сведениям за отопительный и неотопительный период 2023 г. на тепловых сетях в зоне действия НЧТЭЦ произошло 315 отказов.

При этом необходимо отметить, что имеются факты повреждаемости сетей в отопительный период с 2020 — 2024 г.г., что может свидетельствовать о недостаточности надёжности сетей и эффективности проведения регламентных работ по испытаниям тепловых сетей в межотопительный период.

4. Результаты оценки вероятности отказа (аварийной ситуации) и безотказной (безаварийной) работы системы теплоснабжения по отношению к потребителям, присоединенным к магистральным и распределительным теплопроводам системы теплоснабжения г. Набережные Челны

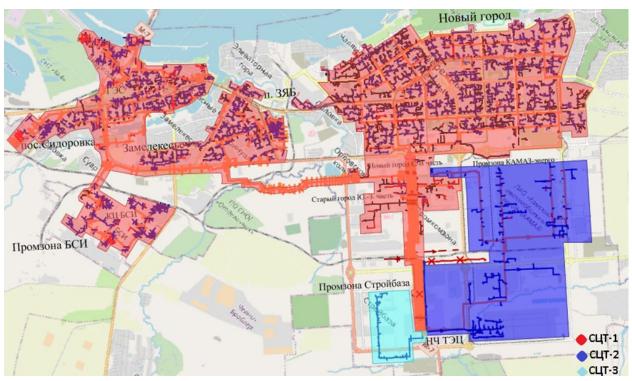


Рис. 4.1. Зона действия централизованных систем сетей теплоснабжения г. Набережные Челны

Результаты расчета по состоянию 2024 года существующей схемы теплоснабжения:

Продолжительность отопительного периода в часах – 5040.

Средняя температура наружного воздуха за отопительный период – -0,84°C.

- 1. Стационарная вероятность рабочего состояния сети составила 0,808472
- 2. Коэффициент готовности к обеспечению расчетного теплоснабжения потребителей 0.937314– 0.99558
 - 3. Вероятность безотказного теплоснабжения потребителей 0,014238-

0,999975.

Ввиду ненормативных показателей надежности системы теплоснабжения, на некоторых участках НЧТЭЦ АО «Татэнерго» необходимо произвести реконструкцию.

Полные результаты расчета показателей надежности потребителей с учетом планируемой и рекомендуемой перекладки приведены в Приложении 1 к Главе 11 Обосновывающих материалов к схеме теплоснабжения. Результаты расчета надежности работы теплопроводов тепловой сети (с указанием года предполагаемой замены участков) представлены в Приложении 2 к Главе 11 Обосновывающих материалов к схеме теплоснабжения.

Ниже рассмотрим оценку надежности теплоснабжения потребителей в перспективном слое электронной модели до 2043 года.

На Рис. 4.2-4.3 представлен сравнительный анализ нормативных и фактических показателей надежности системы теплоснабжения с учетом планируемой и рекомендуемой реконструкции участков тепловой сети до 2043 года.

Рис. 4.2. Сравнительный анализ нормативного и фактического среднего показателя ВБР потребителей тепловодов НЧТЭЦ АО «Татэнерго» до 2043 года

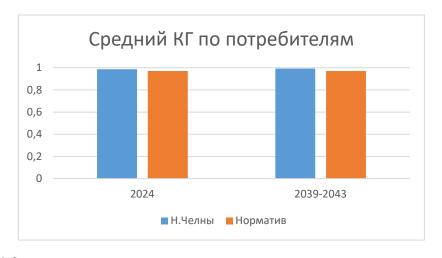


Рис. 4.3. Сравнительный анализ нормативного и фактического среднего

показателя готовности системы теплоснабжения к исправной работе тепловодов НЧТЭЦ АО «Татэнерго» до 2043 года

Таким образом, согласно рис. 4.2, средняя величина вероятности безотказной работы потребителей теплоты становится выше нормативного значения (ВБР=0,9).

Согласно рис. 4.3, средняя величина показателя коэффициента готовности системы теплоснабжения к исправной работе с учетом поэтапной перекладки трубопроводов становится выше нормативного значения (КГ=0,97).

Расчётная вероятность безотказной работы потребителей п. ЗЯБ находится в интервале от 1 до 0,419712 (не жилое здание), в среднем значение составляет 0,958928.

В целях обеспечения нормативной надёжности системы теплоснабжения г. Набережные Челны АО «Татэнерго» предусматривает комплекс мероприятий по усилению ремонтно-восстановительных бригад, что позволяет не допустить повышения фактического времени восстановления повреждений в системе теплоснабжения потребителей выше нормативного значения.

На рис. 4.5 представлены зоны ненормативной надежности в перспективном слое по показателю ВБР потребителей теплоты.

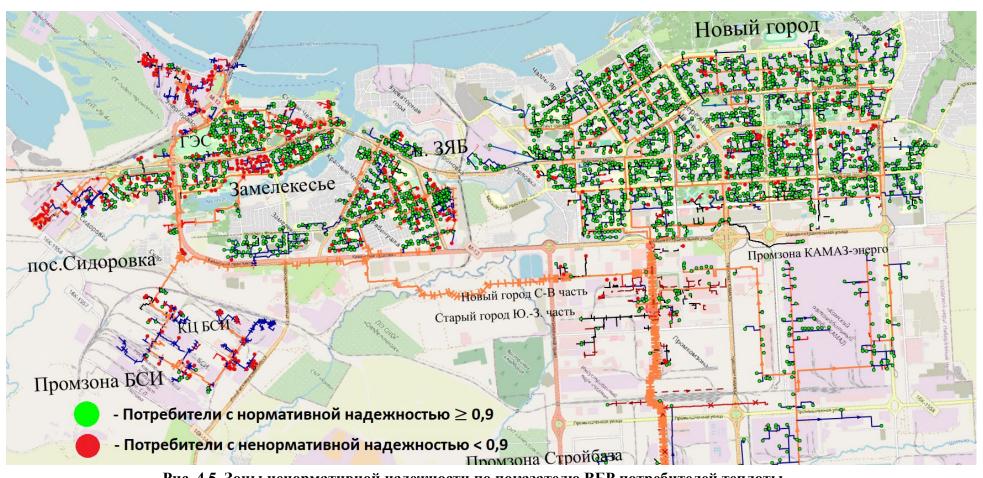


Рис. 4.5. Зоны ненормативной надежности по показателю ВБР потребителей теплоты

5. План ликвидации аварийных ситуаций на тепловых сетях филиала AO «Татэнерго» - НЧТС

В соответствии с требованиями п. 18. 1, раздела V Приказа Минэнерго России от 12.03.2013 № 103 «Об утверждении Правил оценки готовности к отопительному периоду» разработано положение о взаимодействии предприятий занятых в теплоснабжении потребителей. Положение определяет порядок взаимодействия участников системы теплоснабжения и порядок переключений.

Также в целях обеспечения надежного функционирования источника тепловой энергии Набережночелниской ТЭЦ, предусмотрено дублирование основных и вспомогательных инженерных систем и оборудования, которые имеют возможность быстрого оперативного переключения за счёт поперечных связей, предусмотренных компоновкой основного и вспомогательного оборудования:

- электроснабжение собственные нужды резервируются от шин различного класса напряжения, в случае обесточивания всего узла предусмотрено питание от ЗГРЭС и ПС-500 им. Щёлоково;
- топливоснабжение предусмотрено резервное топливное хозяйство (мазут) на НЧТЭЦ и КЦ БСИ;
- водоснабжение предусмотрено водоснабжение от ЗАО «Челныводоканал» по 4-м водоводам Ду-600мм;
- теплоснабжение мощности водогрейных котлов достаточно для обеспечения аварийной нагрузки потребителей в размере 93% при требовании согласно СП 124.13330.2012 в размере 87,2% (мощность водогрейных котлов составляет 2630 Гкал/ч при нагрузке потребителей 2 823,77 Гкал/ч).

Разработан комплекс мероприятий, направленных на обеспечение бесперебойной работы станции, отражённый в соответствующих инструкциях и графиках обследования и диагностирования оборудования и инженерных систем. Данный перечень мероприятий соответствует требования НТД по обеспечению надёжной и безопасной эксплуатации, действующих на территории Российской Федерации.

Перечень возможных технологических нарушений на тепловых сетях филиала АО «Татэнерго» - НЧТС:

№ п/п	Технологическое нарушение
1.	Прекращение подачи теплоносителя от филиала АО «НЧТЭЦ»
2.	Прекращение подачи теплоносителя от Котельного цеха БСИ
3.	Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №110 (Ду-1000) в районе Камеры переключений между тепловой камерой К-2 и автодорогой №1.
4.	Повреждение (порыв) на магистральном обратном трубопроводе тепловой сети тепловода №110 (Ду-1000) в районе Камеры переключений между тепловой камерой К-2 и автодорогой №1.
5.	Повреждение (порыв) на магистральном обратном трубопроводе тепловой сети тепловода.№210 (Ду-800мм) возле ТУ-27(в проходном коллекторе в районе остановки «Цирк» по пр. Сююмбике).

6.	Повреждение (порыв) на магистральном обратном трубопроводе тепловой сети тепловода №211 (Ду-600мм) в проходном коллекторе по пр. Дружба Народов между ТУ-27 и ТУ-49.
7.	Повреждение (порыв) на магистральном обратном трубопроводе тепловой сети тепловода №211 (Ду-600мм) в проходном коллекторе в районе КТС-75, между ТУ-38а и ТУ-40.
8.	Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №111 (Ду-800, 900) в ТУ- 8 и ТУ-89.
9.	Повреждение (порыв) на магистральном обратном трубопроводе тепловой сети (Ду-900) тепловода №111 по Московскому пр-ту в проходном коллекторе в районе КТС-18, между ТУ-89 и ТУ-8.
10.	Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №211(Ду-700мм) в проходном коллекторе между ТУ-35 в сторону ТУ-36А по проспекту Сююмбике в районе 16-й комплекса.
11.	Повреждение (порыв) на магистральном обратном трубопроводе тепловой сети тепловода №211 (ду-600) между ТУ-11 и ТУ-12 в проходном коллекторе по пр. Сююмбике у НО-64 (ж/д 23/05).
12.	Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №21О(Ду-900мм) в районе КТС-96 (Налоговая инспекция, 11 комплекс).
13.	Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №312 (Ду-400мм) между ТУ-71 и ТУ-69, в районе КТС-141 (по улице Усманова, ж/д 46/13).
14.	Повреждение (порыв) на магистральном обратном трубопроводе тепловой сети тепловода №41О(Ду-1ООО) между Павильоном и УТ-3 НО-7.
15.	Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №320 (Ду-900) между ТУ-86 и ТУ-97.
16.	Повреждение (порыв) на магистральном обратном трубопроводе тепловода№320 (Ду-900) между ТУ-86 и ТУ-97.
17.	Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №31О(Ду-700) в районе, НО-415 между ТУ-46 и ТУ-59А.
18.	Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №210(Ду-1000) между Камерой переключений и ТУ-23A.
19.	Повреждение (порыв) на магистральном обратном трубопроводе тепловой сети тепловода №21О (Ду-1ООО) между Камерой переключений и ТУ-23А.
20.	Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №31О (Ду-700) между Камерой переключений и ТУ-87.
21.	Повреждение (порыв) на магистральном обратном трубопроводе тепловой сети тепловода №31О (Ду-700) между Камерой переключений и ТУ-87.
22.	Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №100 (Ду-1ООО) между НЧТЭЦ и ст.499.

23.	Повреждение (порыв) на магистральном обратном трубопроводе тепловой сети тепловода №100 (ду-1000) между НЧТЭЦ и ст.499.
24.	Повреждение (порыв) на магистральном обратном трубопроводе тепловой сети тепловода №51О между ПНС-Сидоровка (ду-700) и тепловой камерой №303 напротив жилого дома С-12-3.
25.	Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода 17-юз (ду-400) между тепловой камерой №100 и №143 по улице Комарова.
26.	Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №17А-юз (ду-400) между тепловой камерой №290 и №291/1 у а/д по проспекту М.Джалиля.
27.	Пожар на объектах филиала АО «Татэнерго» - НЧТС.
28.	Затопление подвального помещения (здания)
29.	Технологическое нарушение ПНС-9, требующее останова оборудования.
30.	Технологическое нарушение на ПНС-Сидоровка, требующее останова оборудования.
31.	Технологическое нарушение на ПНС-7, требующее останова оборудования.
32.	Технологическое нарушение на ПНС-5, требующее останова оборудования.
33.	Технологическое нарушение на ПНС-6, требующее останова оборудования.
34.	Технологическое нарушение на ПНС-6, ПНС-6, требующее останова оборудования.
35.	Технологическое нарушение на ПНС-9, ПНС-Сидоровка, требующее останова оборудования.

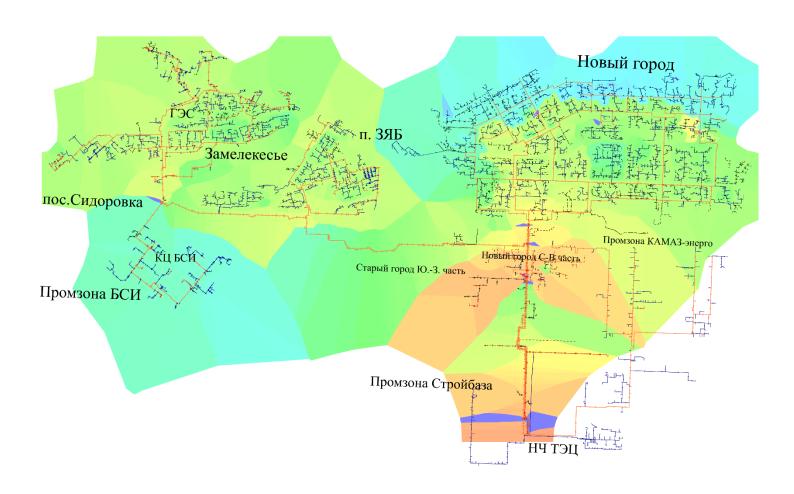


Рис. 4.6. Зоны располагаемых напоров на вводах потребителей в штатном режиме работы системы теплоснабжения

	5.00	
5.00	15.00	
15.00	30.00	
30.00	60.00	
60.00	200.00	

Рис. 4.7. Градация зон с располагаемыми напорами на вводах потребителей, м.

Рассмотрим некоторые аварийные ситуации подробнее.

№1. Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №110 (Ду-1000) в районе Камеры переключений между тепловой камерой К-2 и автодорогой №1.

При указанном повреждении:

- Под отключением: жилых домов нет.
- Растекание горячей сетевой воды с температурой 100°С и выше на территорию, прилегающую к авто/дороге № I и трамвайным путям в районе СТО «Диагностика».
- Опасность несчастного случая и ДТП.

Порядок действий должностных лиц:

- 1. Оповещает об технологическом нарушении руководство филиала АО «Татэнерго»
- НЧТС, НСС АО «Татэнерго» НЧТЭЦ, ОПК и ТБ, группу экономической защиты и режима, дежурного Исполнительного комитета, Ростехнадзор, МЧС, УФСБ, диспетчерские службы потребителей. Вызывает на место повреждения ДПС ГИБДД для перекрытия движения на опасном участке а/дороги № І. Оповещает об опасности движения трамваев диспетчера Трамвайного управления.
- 2. Вызывает на работу начальника ДС, руководителей служб филиала AO «Татэнерго» НЧТС: РСЦ, СМТС, СНиИ.
- 3. Силами оперативного персонала ДС производит необходимые переключения для локализации технологического нарушения и организации аварийновосстановительных работ:
- Предупреждает НСС НЧТЭЦ о начале переключений на ПС-11О;
- Закрывает задвижки на ПС-110: КП-задвижку № Ilc (Ду-800).
- ТУ-1 задвижку № 1с (Ду-800).
- ТК-1 задвижку №1 на ПС в сторону потребителей;
- Уз.-1,05 задвижку №1 на ОС в сторону потребителей; Открывает для опорожнения отключенного участка ПС-110 дренажи: КП-задвижку №11д(Ду-100)
- K-2 задвижку №lд;
- ТУ-1 -задвижку №1д.
- 4. Поднимает давление на НЧТЭЦ до максимально возможных значений. При не достаточном давлении в подающем трубопроводе делает необходимые переключения:
- ПНС-1 запускает насос на ОС-200;
- ПНС -5 запускает насос на ПС-100;
- ПНС-6 запускает насосы на ПС-200, ПС-300.

Результаты расчёта гидравлического режима работы систем теплоснабжения при аварийной ситуации

Источник ID=29966 ТЭЦ:

T C	1100 102 F
Количество тепла, вырабатываемое на источ	нике за час 1189.183, Гкал/ч
Расход тепла на систему отопления	695.084, Гкал/ч
Расход тепла на систему вентиляции	107.108, Гкал/ч
Расход тепла на закрытые системы ГВС	285.921, Гкал/ч
Расход тепла на циркуляцию	$0.018,\Gamma$ кал/ч
Тепловые потери в подающем трубопроводе	е 49.70109, Гкал/ч
Тепловые потери в обратном трубопроводе	25.49595, Гкал/ч
Потери тепла от утечек в подающем трубоп	роводе 16.09159, Гкал/ч
Потери тепла от утечек в обратном трубопро	оводе 7.39064, Гкал/ч
Потери тепла от утечек в системах теплопот	гребления 2.37080, Гкал/ч
Суммарный расход в подающем трубопрово	оде 18617.875, т/ч
Суммарный расход в обратном трубопровод	це 18261.578, т/ч
Суммарный расход на подпитку	356.297, т/ч
Суммарный расход на систему отопления	15578.412, т/ч
Суммарный расход на систему вентиляции	2014.710, T/q
Расход воды на параллельные ступени ТО	865.407, т/ч
Расход воды на утечки из подающего трубо	провода 153.48541, т/ч
Расход воды на утечки из обратного трубоп	ровода 153.22767, т/ч
I would be Abi iiw jie iiii iis sepuillele ipjeen	
Расход воды на утечки из систем теплопотре	ебления 49.57255, т/ч
	,
Расход воды на утечки из систем теплопотре	,
Расход воды на утечки из систем теплопотра Давление в подающем трубопроводе	120.000, м
Расход воды на утечки из систем теплопотро Давление в подающем трубопроводе Давление в обратном трубопроводе	120.000, м 20.000, м

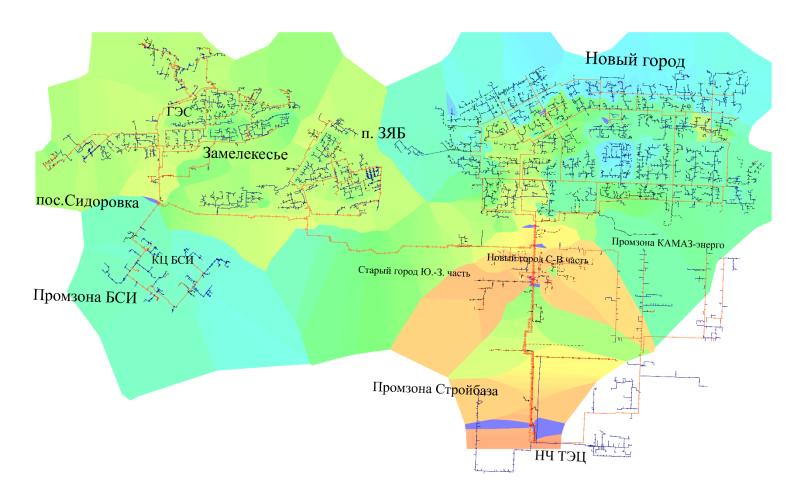


Рис. 4.8. Зоны располагаемых напоров на вводах потребителей в рассматриваемом аварийном режиме №1

№2. Повреждение (порыв) на магистральном обратном трубопроводе тепловой сети (Ду-900) тепловода №111 по Московскому пр-ту в проходном коллекторе теплосети в районе КТС-18, между ТУ-89 и ТУ-8.

При указанном повреждении:

- Под отключением отопление и горячее водоснабжение: объектов 1, 2, 3, 28, 29, 30 комплексов полностью, 53/26, 27, 28, 42; ж/дома 83 шт.; д/сады 6 шт.; школы 5 шт.; горздрав 3 объекта.
- Снижение тепловой нагрузки НЧТЭЦ на 218,0 Гкал/час.

Порядок действий должностных лиц:

- 1. Оповещает об технологическом нарушении руководство филиала АО «Татэнерго» НЧТС, НСС филиала АО «Татэнерго»-НЧТЭЦ, ОПК и ТБ, группу экономической защиты и режима, дежурного Исполнительного комитета, Ростехнадзор, МЧС, УФСБ, диспетчерские службы потребителей 1, 2, 3, 28, 29, 30 комплексов полностью, 53/26, 27, 28, 42
- 2. Силами оперативного персонала ДС производит необходимые переключения для локализации технологического нарушения и организации аварийно-восстановительных работ: Закрывает задвижки на обратном трубопроводе теплосети:
 - ТУ-4 задвижку № lc (Ду-600) в сторону ТУ-7;
 - ТУ-4 задвижку № 3с (Ду-300) в сторону 1-3 к-сов;
 - ТУ-4 задвижку № 5с (Ду-150) в сторону 54 к-са;
 - ТУ-7 задвижку № 1с (Ду-300) в сторону 30 к-са;
 - ТУ-7 задвижку № 3с (Ду-300) в сторону Рынка;
 - ТУ-8 задвижку № lc (Ду-500) в сторону ТУ-19;
 - ТУ-8 задвижку № 3с (Ду-800) в сторону ТУ-84;
 - ТУ-9 задвижку № 5с (Ду-500) в сторону ТУ-10;
 - ТУ-9 задвижку 1с (Ду-300) в сторону29 комплекса;
 - ТУ-9 задвижку 3c (Ду-300) в сторону органного зала «России».

Открывает для опорожнения отключенного участка ОС-11 Ідренажи:

- ТУ-8 задвижку № 2д (Ду-300);
- ТУ-9-задвижку № 4п, 7д (ду-125).
- ТУ-4-задвижку № 4д (ду-100).
- ТУ-7 задвижку № 2д (Ду-80).
- 3. После отключения поврежденного участка теплосети дает указание НСС НЧТЭЦ снизить тепловую нагрузку на 218,0 Гкал/час (либо дает указание потребителям собрать схему отопления с подачи теплосети на слив, ГВС отключить полностью).
- 4. Оповещает и вызывает на работу руководителей СМТС, РСЦ, для организации аварийно- восстановительных работ.

Ведет оперативные переговоры и запись оперативных действий и указаний в хронологическом порядке.

Результаты расчёта гидравлического режима работы систем теплоснабжения при аварийной ситуации

Источник ID=29966 ТЭЦ:

Количество тепла, вырабатываемое на источнике за час 1101.426, Гкал/ч

Расход тепла на систему отопления 639.763, Гкал/ч

Расход тепла на систему вентиляции 98.091, Гкал/ч

Расход тепла на закрытые системы ГВС	266.511, Гкал/ч
Расход тепла на циркуляцию	0.018, Гкал/ч
Тепловые потери в подающем трубопроводе	47.46856, Гкал/ч
Тепловые потери в обратном трубопроводе	24.50162, Гкал/ч
Потери тепла от утечек в подающем трубопровод	це 15.73136, Гкал/ч
Потери тепла от утечек в обратном трубопроводе	е 7.17231, Гкал/ч
Потери тепла от утечек в системах теплопотребл	ения 2.16836, Гкал/ч
Суммарный расход в подающем трубопроводе	17213.453, т/ч
Суммарный расход в обратном трубопроводе	16870.490, т/ч
Суммарный расход на подпитку	342.963, т/ч
Суммарный расход на систему отопления	14390.203, т/ч
Суммарный расход на систему вентиляции	1844.432, т/ч
Расход воды на параллельные ступени ТО	824.085, T/q
Расход воды на утечки из подающего трубопрово	ода 148.88506, т/ч
Расход воды на утечки из обратного трубопровод	ца 148.53035, т/ч
Расход воды на утечки из систем теплопотреблен	ния 45.53688, т/ч
Давление в подающем трубопроводе	120.000, м
Давление в обратном трубопроводе	20.000, м
Располагаемый напор 100	0.000, м
Температура в подающем трубопроводе	114.000,°C
Температура в обратном трубопроводе	50.929 °C

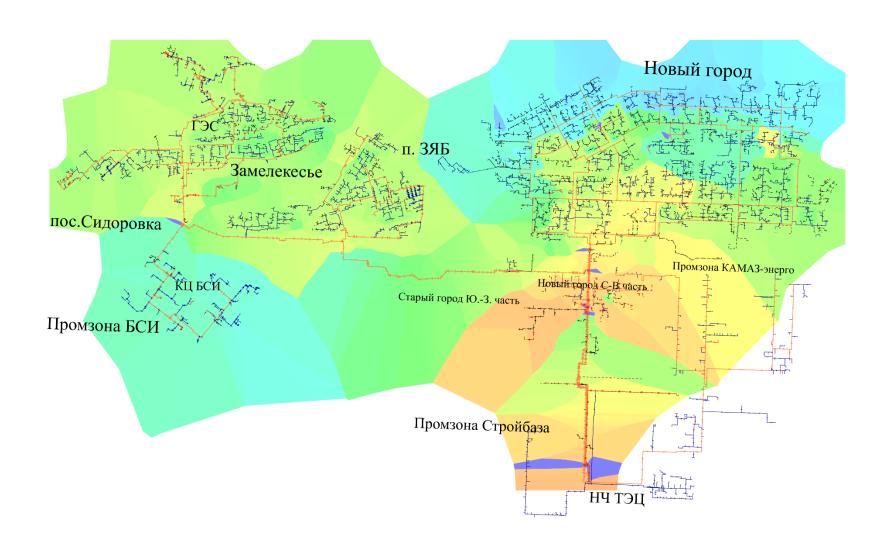


Рис. 4.9. Зоны располагаемых напоров на вводах потребителей в рассматриваемом аварийном режиме №2

№3. Повреждение (порыв) на магистральном подающем трубопроводе тепловой сети тепловода №210 (Ду- 900мм) в районе КТС-96 (налоговая инспекция, 11 комплекс).

При указанном повреждении:

- Под отключением отопление и горячее водоснабжение объектов: полностью объекты 11, 16, 13, 14, 41 комплексов (54 ж/домов);
- ограничение по располагаемому напору объектов 43, 45, 47 комплексов на 50%.
- Снижение тепловой нагрузки НЧТЭЦ на 119,0 Гкал/час.

Действия должностных лиц:

- 1. Оповещает об технологическом нарушении руководство филиала АО «Татэнерго» НЧТС, НСС филиала АО «Татэнерго» НЧТЭЦ, ОПК и ТБ, группу экономической защиты и режима, дежурного Исполнительного комитета, Ростехнадзор, МЧС, УФСБ, диспетчерские службы потребителей.
- 2.Силами оперативного персонала ДС производит необходимые переключения для локализации технологического нарушения и организации аварийновосстановительных работ:
- закрыть поэтапно задвижку № 15С на Камере Переключений (КП) на ПС№320
- закрыть задвижки на теплосети:
 - ТУ-97 задвижку № 1с (ду-600) в сторону ТУ-86;
 - ТУ-97 задвижку № 16 (Ду-150) в сторону ТУ-86;
 - ТУ-97 задвижку No 5c (ду-100) в сторону «Собачий питомник»;
 - ТУ-96- задвижку № 2c (ду-200) в сторону гаражей «Гренада»;
 - НО-452-задвижку №1с (Ду-80) в сторону Гаражей;
 - HO-216 (HO-448)- задвижку №lc (Ду-80) в сторону СТО;
 - НО-455 задвижку №1с (Ду-100) в сторону АК Батыр;
 - ТУ-99- задвижку №1с (Ду-50) в сторону Стоянки;
 - НО-445 задвижку №1с (ду-150) в сторону а/салона;
 - ТУ-86- задвижку №1с (Ду-800) в сторону ТУ-85;
 - ТУ-86 задвижку №1б (Ду-100) в сторону ТУ-85;
 - ТУ-86- задвижку №7с (Ду-300) в сторону ТК-1 (54 к-с).
 - открыть дренажные задвижки:
 - КТС-217 -задвижку №2с (Ду-250);
 - ТУ-97 задвижки №3с, 6с (Ду-300).
- 3. После отключения поврежденного участка теплосети дает указание НСС НЧТЭЦ снизить тепловую нагрузку.
- 4. Оповещает и вызывает на работу руководителей СМТС, РСЦ, для организации аварийно- восстановительных работ.
- 5. Ведет оперативные переговоры и запись оперативных действий и указаний в хронологическом порядке.

Результаты расчёта гидравлического режима работы систем теплоснабжения при аварийной ситуации

Источник ID=29966 ТЭЦ:

Количество тепла, вырабатываемое на источнике за час 1148.345, Гкал/ч

Расход тепла на систему отопления 668.601, Гкал/ч

Расход тепла на систему вентиляции 105.981, Гкал/ч

Расход тепла на закрытые системы ГВС	275.558, Гкал/ч
Расход тепла на циркуляцию	0.018, Гкал/ч
Тепловые потери в подающем трубопроводе	48.58105, Гкал/ч
Тепловые потери в обратном трубопроводе	24.96409, Гкал/ч
Потери тепла от утечек в подающем трубопровод	де 15.41215, Гкал/ч
Потери тепла от утечек в обратном трубопроводе	6.99191, Гкал/ч
Потери тепла от утечек в системах теплопотребле	ения 2.22968, Гкал/ч
Суммарный расход в подающем трубопроводе	17965.872, т/ч
Суммарный расход в обратном трубопроводе	17614.455, т/ч
Суммарный расход на подпитку	351.416, т/ч
Суммарный расход на систему отопления	14944.354, т/ч
Суммарный расход на систему вентиляции	1997.661, т/ч
Расход воды на параллельные ступени ТО	870.372, т/ч
Расход воды на утечки из подающего трубопрово	рда 151.29998, т/ч
Расход воды на утечки из обратного трубопровод	а 150.97258, т/ч
Расход воды на утечки из систем теплопотреблен	ия 49.13278, т/ч
Давление в подающем трубопроводе	120.000, м
Давление в обратном трубопроводе	20.000, м
Располагаемый напор 100.00	00, м
Температура в подающем трубопроводе	114.000,°C
Температура в обратном трубопроводе	50.981°C

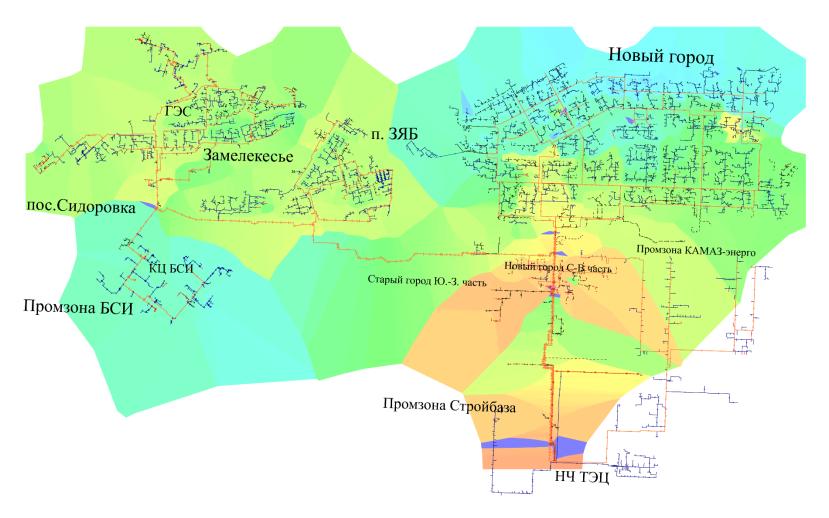


Рис. 4.10. Зоны располагаемых напоров на вводах потребителей в рассматриваемом аварийном режиме №3

№4. Прекращение подачи теплоносителя от филиала АО «НЧТЭЦ».

При указанном повреждении:

- Потребители поселков Сидоровка, ГЭС, Замелекесье и промзоны БСИ обеспечиваются тепловой энергией в 100% объёме от резервного источника КЦ БСИ
- Под отключением: Потребители п. Зяб и «Новой город»

Результаты расчёта гидравлического режима работы систем теплоснабжения при аварийной ситуации

Источник ID=13249 КЦ БСИ:

Количество тепла, вырабатываемое на источнике за ча	с 188.755, Гкал/ч
Расход тепла на систему отопления 11	19.059, Гкал/ч
Расход тепла на систему вентиляции	13.617, Гкал/ч
Расход тепла на закрытые системы ГВС	33.135, Гкал/ч
Расход тепла на циркуляцию 0.0	43, Гкал/ч
Тепловые потери в подающем трубопроводе	11.68224, Гкал/ч
Тепловые потери в обратном трубопроводе	6.93280, Гкал/ч
Потери тепла от утечек в подающем трубопроводе	2.41404, Гкал/ч
Потери тепла от утечек в обратном трубопроводе	1.31066, Гкал/ч
Потери тепла от утечек в системах теплопотреблени	я 0.56207, Гкал/ч
Суммарный расход в подающем трубопроводе	3499.136, т/ч
Суммарный расход в обратном трубопроводе	3443.558, т/ч
Суммарный расход на подпитку	55.578, т/ч
Суммарный расход на систему отопления	2642.719, т/ч
Суммарный расход на систему вентиляции	278.077, т/ч
Расход воды на параллельные ступени ТО	548.810, т/ч
Расход воды на утечки из подающего трубопровода	23.00414, т/ч
Расход воды на утечки из обратного трубопровода	22.89524, т/ч
Расход воды на утечки из систем теплопотребления	9.67856, т/ч
Давление в подающем трубопроводе	60.000, м
Давление в обратном трубопроводе	20.000, м
Располагаемый напор	40.000, м
Температура в подающем трубопроводе	114.000,°C
Температура в обратном трубопроводе	60.945°C

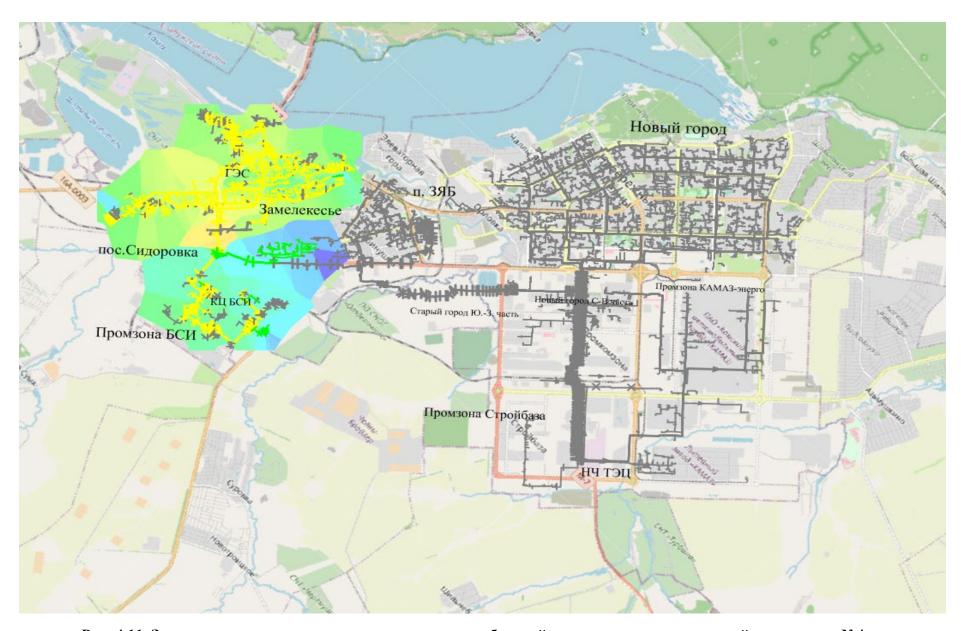


Рис. 4.11. Зоны располагаемых напоров на вводах потребителей в рассматриваемом аварийном режиме №4